Telegram Group & Telegram Channel
🖥 Задача: Анализ пользовательского поведения с аномалиями в SQL

## Условие задачи:

Дана таблица user_events со следующей структурой:


CREATE TABLE user_events (
user_id INT,
event_time TIMESTAMP,
event_type VARCHAR(50),
platform VARCHAR(50)
);


🎯 Каждая строка описывает событие пользователя:
- user_id — идентификатор пользователя,
- event_time — время события,
- event_type — тип события (`login`, purchase, logout, error и т.д.),
- platform — платформа (`iOS`, Android, `Web`).

Требуется:

1. Найти пользователей, которые:
- Выполнили покупку (`purchase`),
- Но не заходили в систему (`login`) в течение последних 7 дней перед покупкой.

2. Найти пользователей, у которых:
- Более 30% всех событий за последний месяц составляют события типа error.

3. Рассчитать для каждого пользователя:
- Среднее время между входом (`login`) и следующим выходом (`logout`).
- Если logout отсутствует после login — игнорировать такую сессию.

---

## Дополнительные условия:

- Считайте, что данные могут быть объемными: миллионы строк.
- Решение должно быть оптимизировано: избегайте подзапросов в подзапросах без индексов, старайтесь минимизировать количество проходов по данным.
- Можно использовать оконные функции (`WINDOW FUNCTIONS`) и временные таблицы (`CTE`) для упрощения запросов.
- Платформу можно игнорировать в расчетах.

---

## Что оценивается:

- Умение использовать оконные функции и агрегаты.
- Умение правильно интерпретировать условия задачи в SQL-операции.
- Оптимизация запросов под большие объемы данных.
- Чистота, читаемость и структурированность кода SQL-запросов.

---

Примечание:
Эта задача проверяет как технические навыки работы с SQL, так и внимательность к деталям формулировки задачи. Небрежная реализация может дать неверные результаты, особенно на больших данных.

🔥 Подсказки и намёки для решения задачи


## Задание 1: Найти пользователей с покупками без логина за последние 7 дней

**Намёк:**
- Используйте оконную функцию LAG() или MAX() с фильтрацией событий login.
- Для каждой покупки проверяйте, был ли login в пределах 7 дней до события purchase.
- Можно применить LEFT JOIN событий login к событиям purchase.

## Задание 2: Найти пользователей с долей ошибок > 30%

**Намёк:**
- Используйте оконные функции COUNT(*) и SUM(CASE WHEN event_type = 'error' THEN 1 ELSE 0 END).
- Постройте долю ошибок на основе всех событий пользователя за последние 30 дней (`WHERE event_time >= CURRENT_DATE - INTERVAL '30 days'`).

## Задание 3: Рассчитать среднее время между login и следующим logout

**Намёк:**
- Используйте оконную функцию LEAD() для поиска следующего события после login.
- Пара login -> logout должна иметь корректный порядок по времени.
- Отбрасывайте случаи, где следующего logout нет или это событие другого типа.

@sqlhub
Please open Telegram to view this post
VIEW IN TELEGRAM



tg-me.com/sqlhub/1857
Create:
Last Update:

🖥 Задача: Анализ пользовательского поведения с аномалиями в SQL

## Условие задачи:

Дана таблица user_events со следующей структурой:


CREATE TABLE user_events (
user_id INT,
event_time TIMESTAMP,
event_type VARCHAR(50),
platform VARCHAR(50)
);


🎯 Каждая строка описывает событие пользователя:
- user_id — идентификатор пользователя,
- event_time — время события,
- event_type — тип события (`login`, purchase, logout, error и т.д.),
- platform — платформа (`iOS`, Android, `Web`).

Требуется:

1. Найти пользователей, которые:
- Выполнили покупку (`purchase`),
- Но не заходили в систему (`login`) в течение последних 7 дней перед покупкой.

2. Найти пользователей, у которых:
- Более 30% всех событий за последний месяц составляют события типа error.

3. Рассчитать для каждого пользователя:
- Среднее время между входом (`login`) и следующим выходом (`logout`).
- Если logout отсутствует после login — игнорировать такую сессию.

---

## Дополнительные условия:

- Считайте, что данные могут быть объемными: миллионы строк.
- Решение должно быть оптимизировано: избегайте подзапросов в подзапросах без индексов, старайтесь минимизировать количество проходов по данным.
- Можно использовать оконные функции (`WINDOW FUNCTIONS`) и временные таблицы (`CTE`) для упрощения запросов.
- Платформу можно игнорировать в расчетах.

---

## Что оценивается:

- Умение использовать оконные функции и агрегаты.
- Умение правильно интерпретировать условия задачи в SQL-операции.
- Оптимизация запросов под большие объемы данных.
- Чистота, читаемость и структурированность кода SQL-запросов.

---

Примечание:
Эта задача проверяет как технические навыки работы с SQL, так и внимательность к деталям формулировки задачи. Небрежная реализация может дать неверные результаты, особенно на больших данных.

🔥 Подсказки и намёки для решения задачи


## Задание 1: Найти пользователей с покупками без логина за последние 7 дней

**Намёк:**
- Используйте оконную функцию LAG() или MAX() с фильтрацией событий login.
- Для каждой покупки проверяйте, был ли login в пределах 7 дней до события purchase.
- Можно применить LEFT JOIN событий login к событиям purchase.

## Задание 2: Найти пользователей с долей ошибок > 30%

**Намёк:**
- Используйте оконные функции COUNT(*) и SUM(CASE WHEN event_type = 'error' THEN 1 ELSE 0 END).
- Постройте долю ошибок на основе всех событий пользователя за последние 30 дней (`WHERE event_time >= CURRENT_DATE - INTERVAL '30 days'`).

## Задание 3: Рассчитать среднее время между login и следующим logout

**Намёк:**
- Используйте оконную функцию LEAD() для поиска следующего события после login.
- Пара login -> logout должна иметь корректный порядок по времени.
- Отбрасывайте случаи, где следующего logout нет или это событие другого типа.

@sqlhub

BY Data Science. SQL hub


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/sqlhub/1857

View MORE
Open in Telegram


Data Science SQL hub Telegram | DID YOU KNOW?

Date: |

Export WhatsApp stickers to Telegram on Android

From the Files app, scroll down to Internal storage, and tap on WhatsApp. Once you’re there, go to Media and then WhatsApp Stickers. Don’t be surprised if you find a large number of files in that folder—it holds your personal collection of stickers and every one you’ve ever received. Even the bad ones.Tap the three dots in the top right corner of your screen to Select all. If you want to trim the fat and grab only the best of the best, this is the perfect time to do so: choose the ones you want to export by long-pressing one file to activate selection mode, and then tapping on the rest. Once you’re done, hit the Share button (that “less than”-like symbol at the top of your screen). If you have a big collection—more than 500 stickers, for example—it’s possible that nothing will happen when you tap the Share button. Be patient—your phone’s just struggling with a heavy load.On the menu that pops from the bottom of the screen, choose Telegram, and then select the chat named Saved messages. This is a chat only you can see, and it will serve as your sticker bank. Unlike WhatsApp, Telegram doesn’t store your favorite stickers in a quick-access reservoir right beside the typing field, but you’ll be able to snatch them out of your Saved messages chat and forward them to any of your Telegram contacts. This also means you won’t have a quick way to save incoming stickers like you did on WhatsApp, so you’ll have to forward them from one chat to the other.

Newly uncovered hack campaign in Telegram

The campaign, which security firm Check Point has named Rampant Kitten, comprises two main components, one for Windows and the other for Android. Rampant Kitten’s objective is to steal Telegram messages, passwords, and two-factor authentication codes sent by SMS and then also take screenshots and record sounds within earshot of an infected phone, the researchers said in a post published on Friday.

Data Science SQL hub from br


Telegram Data Science. SQL hub
FROM USA